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Abstract. Automated fault detection is an increasingly important prob-
lem in aircraft maintenance and operation. Standard methods of fault de-
tection assume the availability of either data produced during all possible
faulty operation modes or a clearly-defined means to determine whether
the data provide a reasonable match to known examples of proper oper-
ation. In the domain of fault detection in aircraft, the first assumption
is unreasonable and the second is difficult to determine. We envision a

system for online fault detection in aircraft, one part of which is a clas-
sifter that predicts the maneuver being performed by the aircraft as a
function of vibration data and other available data. To develop such a

system, we use flight data collected under a controlled test environment,
subject to many sources of variability. We explain where our classifier fits
into the envisioned fault detection system as well as experiments showing
the promise of this classification subsystem.

1 Introduction

A critical aspect of the operation and maintenance of aircraft is detecting prob-

lems in their operation when they occur in flight. This allows maintenance and

flight crews to fix problems before they become severe and lead to significant air-

craft damage or even a crash. Fault detection systems designed for this purpose

are becoming a standard requirement in most aircraft [2, 7]. However, most sys-

tems produce too many false alarms, mainly due to an inability to compare real
behavior with modeled behavior, making their reliability questionable in prac-

tice [6]. Other systems require a clearly-defined means to determine whether
the data provide a reasonable match to known examples of proper operation

or assume the availability of data produced during all possible faulty operation

modes [2, 3, 7]. Because of the highly safety-critical nature of the aircraft domain

application, most fault detection systems are faced with the task of functioning

for systems for which fault data are non-existent. Models are typically used to

predict the effect of damage and failures on otherwise healthy (baseline) data

[4, 6]. However, while models are a necessary first start, the modeled system re-
sponse often does not take operational variability into account, resulting in high



Table1.Conceptual open loop model illustrating assumed causal relationships.

Flight -----+
Maneuver (M)

• Fwd. Flight
• Side Flight
• Fwd. Climb
• Fwd. Descent
.Hover
• Hover Turn
• Coord. Turn

.[other]

Aircraft _ Physical ---+
Attitude (h) Input (I)

• Radar Alt, .Engine Torque
-Airspeed
• Climb Rate
-Heading
-Bank
.Pitch
• Side Slip
.[other]

• Engine Speed
• [Mast Lifting]
• [Mast Bending]
.[other]

Internal ----+
Response (R.)

,[Tooth
Bending]
.[Backlash]
.[Friction]
.[Heaq
,[othe_]
.[DAMAGE]

Measured
Output (O)
.Vibration

- x axis
- y axis
- z axis

.[T_mv]

.[Noi_4

.[other]
i

false-alarm rates. Novelty detection is one approach to overcoming this prob-

lem, addressing the problem of modeling the proper operation of a system and

detecting when its operation deviates significantly from normal operation [3, 5].

In this paper, we present an approach to novelty detection for in-flight air-

craft data. The data were collected as part of a research effort to understand the

sources of variability present in the actual flight environment, with the purpose

of reducing the high rates of false alarms [4, 8]. In past work, we have described
aircraft operation conceptually according to the open-loop causal model shown

in Table 1. We assume that the maneuver being performed (M) influences the

observable aircraft attitudes (A), which in turn influence the set of possibly ob-
servable physical inputs (I) to the transmission. The physical inputs influence the

transmission in a variety of ways that are not typically observable (R); however,

there are outputs that can be observed (O). Our approach to fault detection in

aircraft depends fundamentally on the assumption that the nature of the rela-

tionships between the elements M, A, I, R, and O described above change when

a fault materializes. Many approaches to fault detection attempt to model only

the set of possible outputs (O) and indicate the presence of a fault when the ac-

tual outputs do not match the model. However, this approach is difficult because

the output space is often too complicated to allow faithful modeling and mea-

suring differences between the model and actual outputs. This latter difficulty

remains even if one attempts to model the output as a function of something

that influences it such as the physical inputs or the flight maneuver due to noise

and other influences. Approaches to fault diagnosis (e.g., [9]) attempt to predict
either normal operation or one of a designated set of faults. As stated earlier,

this is not possible in the aircraft domain because the set of possible faults is
unknown and fault data is non-existent. For this reason, we envision a fault de-

tection system containing a classifier that models the flight maneuver (M) as

a function of the outputs (O). This allows us to measure differences between

modeled and actual operation in the discrete space of flight maneuvers, which is

a much simpler space than the space of vibration signals (O). We would like to

harness this fact in our system.

In order for our fault detection system to have a low false-alarm rate, we

need a maneuver classifier with the highest performance possible. In addition



to usingMultilayerPerceptrons(MLPs)andRadialBasisFunction(RBF)net-
works,weuseensembIesof MLPsandRBFnetworks.Wehavealsoidentified
setsofmaneuvers(e.g.,threedifferenthovermaneuvers)thataresimilarenough
to oneanotherthat misclassificationswithinthesegroupsisunlikelyto imply
thepresenceof afault.Additionally,wesmoothoverthepredictionsfor small
windowsoftimeinorderto mitigatetheeffectsofnoise.

In thefollowing,Section2 discusses the aircraft under study and the data

generated from them. We discuss the machine learning methods that we used

and the associated data preparation that we performed in Section 3. We discuss

the experimental results in Section 4. We summarize the results of this paper

and discuss ongoing and future work in Section 5.

2 Aircraft Data

The data used in this work were collected from two helicopters: an AH1 Cobra

and OH58c Kiowa [4]. The data were collected by having two Nlots each fly two

designated sequences of steady-state maneuvers according to a predetermined

test matrix [4]. It uses a modified Latin-square design to counterbalance changes

in wind conditions, ambient temperature, and fuel depletion. Each of the four

flights consisted of an initial period on the ground with the helicopter blades at
flat pitch, followed by a low hover, a sequence of maneuvers drawn from the 12

primary maneuvers, a low hover, and finally a return to ground. Each maneuver

was scheduled to last 34 seconds in order to allow a sufficient number of cycles of

the main rotor and planetary gear assembly to apply the signal decomposition

techniques used in the previous studies [4].
Summary matrices were created from the raw data by averaging the data

produced during each revolution of the planetary gear. The summarized data
consists of 31475 revolutions of data for the AH1 and 34144 revolutions of data

for the OH58c. Each row, representing one revolution, indicates the maneuver

being performed during that revolution as well as the following 30 quantities:

Revolutions per minute of the planetary gear, torque (mean, standard deviation,

skew, and kurtosis), and vibration data from six accelerometers (root-mean-

square, skew, kurtosis, and a binary variable indicating whether signal clipping
occurred). For the AH1, the mean and standard deviation values were available

for the following attitude data from a 1553 bus: aItitude, speed, rate of climb,

heading, bank angle, pitch, and slip.

3 Methods

Sample torque and RPM data from one maneuver separated by pilot and by

flights are shown in Figures 1 and 2, respectively. The highly-variable nature of

the data, as well as differences due to different pilots and different days when the

aircraft were flown, are clearly visible and make this a challenging classification

problem. To perform the necessary mapping for this problem, we chose multi-

layer perceptrons (MLPs) with one hidden layer and radial basis function (RBF)
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Table 2. Sample confusion matrix for OH58 (MLP).

True Predicted Class

Class 1 } 2 I 3 4 I 5 I 6 I 7 [ 8 I 9 I0 11 12 13 14
1 693 O 7 6 79 O O

2 O 679 O 0 O O 0

3 55 1 i68 64 31 6 O

4 26 O 43 691i 15 0 O
5 196 0 68 41 412 0 O

6 O O O 0 0 719 O

7 O 0 0 O O O '1079

8 0 9 22 16 0 0 0

9 0 1 1 6 0 0 0

10 0 4 1 6 0 0 0

11 4 '0 15 4 3 0 0

12 3 0 7 6 4 0 0

13 0 63 0 I 0 0 0 0

14 O 0 0 [ 0 0 O O

0 0 0 0 0 0 0

O O O O O 47 "0

11 9 1 11 7 0 3

3 O 0 0 2 O I

0 0 0 2 16 0 0

0 0 0 0 0 0 0

O O 0 O O O 0
7"48 177 97 11 6 3 0

172 381 162 4 7 (_ 0

186 170 376 0 8 13 0

2 1 0 494 217 0 0

2 1 0 200 531 0 0

4 1 0 0 0 712 0

0 O 0 O 0 0 685

networks as base classifiers. Furthermore, we constructed ensembles of each type

of classifier, as well as ensembles consisting of half MLPs and half RBF networks,

because ensembles have been shown to improve upon the performance of their

constituent or base classifiers, particularly when the correlation among the base

classifiers can be kept low [1, 10].

We created data sets for each of the two aircraft by combining its 176 sum-

mary matrices. This resulted in 31475 patterns (revolutions) for the AH1 and

34144 for the OH58. Both types of classifiers were trained using a randomly-

selected two-thirds of the data (21000 examples for the AH1, 23000 for the

OH58) and were tested on the remainder for the first set of experiments. For

both aircraft, we used various subsets of the inputs.

In addition, we calculated the confusion matrix of every classifier we created.

Entry (i, j) of the confusion matrix of a classifier states the number of times that



an example of class i is classified as class j. In examining the confusion matri-

ces of the classifiers (see Table 2 for an example of a confusion matrix--entry

(1, 1) is in the upper left corner), we noticed that particular maneuvers were

continually being confused with one another. In particular, the three hover ma-

neuvers (8-Hover, 9-Hover Turn Left, and 10-Hover Turn Right) were frequently

confused with one another and the two coordinated turns (ll-Coordinated Turn

Left and 12-Coordinated Turn Right) were also frequently confused (the counts

associated with these errors are shown in bold in Table 2.) These sets of ma-

neuvers are similar enough to one another that miselassifications within these

groups are unlikely to imply the presence of faults. Therefore, for the second set

of experiments, we recalculated the classification accuracies allowing for these

misclassifications. For our third set of experiments, we consolidated these two

sets of maneuvers in the data before running the experiments. That is, we com-
bined the hover maneuvers into one class and the coordinated turns into one

class, yielding a total of 11 possible predictions instead of the original 14. We

expected the performance to be best for this third set of experiments because,

informally, the classifiers do not have to waste resources distinguishing among
the two sets of similar maneuvers.

Finally, we used the knowledge that a helicopter needs some time to change

maneuvers. That is, two sequentially close patterns are unlikely to come from

different maneuvers. To obtain results that use this "prior" knowledge, we tested

on sequences of revolutions by averaging the classifiers' outputs on a window of

examples surrounding the current one. In one set of experiments, we averaged

over windows of size 17 (8 revolutions before the current one, the current one,

and 8 revolutions after the current one) which corresponds to about three sec-

onds. Because the initial training and test sets were randomly chosen from this

sequence, this averaging could not be performed on the test set alone. Instead

it was performed on the full data set for both helicopters. To allow meaningful

comparisons of these results, we also computed the errors of the single-revolution
classifiers on this full dataset and present them in Tables 4 and 6.1

4 Results

In this section we describe the experimental results that we have obtained so far.
We first discuss results on the OH58 helicopter. In Table 3, the column marked

"Single Rev" shows the results of running individual networks and ensembles
of various sizes on the summary matrices randomly split into training and test

sets. We only present results for some of the ensembles we constructed due to

space limitations and because the ensembles exhibited relatively small gains be-

yond N = 10 base models. MLPs and ensembles of MLPs outperform RBFs

1 We performed this windowed averaging as though the entire data were collected
over a single flight. However, it was in fact collected in stages, meaning that there
are no transitions between maneuvers. We show these results to demonstrate the

applicability of this method to sequential data obtained in actual flight after training
the network on "static" single revolution patterns.



Table 3. OH58c Single Revolution Test Set Results.

Base [ N I SingleT cpe Rev

1 79.789 + 0.0721
MLP 4 81.997 + 0.065i

10 82.441 4- 0.045

100 82.771 4- 0.016

1 75.451 -t- 0.103

RBF 4 75.817 4- 0.048

10 75.871 4- 0.040
50 75.908 4- 0.016

2 80.190 4- 0.079

MLP/ 4 80.946 4- 0.059
RBF I0 81.406 4- 0.043

100 81.543 4- 0.020

Post-Run

Consolidated

89.498 4- 0.034

89.506 4- 0.011

Pre-Run

Consolidated

92.709 4- 0.055 93.566 4-

93.820 4- 0.044 94.422 4-
94.015 4- 0.028 94.672 4-

94.133 4- 0.011 94.672 4-

89.305 + 0.08090.460 4- 0.169

89.485 4- 0.047 90.912 4- 0.056
90.987 :i: 0.032

91.018 4- 0.014
92.834 4- 0.065

93.189 4- 0.042

93.403 4- 0.039

93.463 4- 0.017

0.060

0.038
0.032
0.032

93.777 4- 0.046

94.097 4- 0.048

94.348 4- 0.025

94.457 4- 0.011

and ensembles of RBFs consistently. The ensembles of MLPs improve upon sin-

gle MLPs to a greater extent than ensembles of RBF networks do upon single

networks, indicating that the MLPs are more diverse than the RBF networks.

Mixed ensembles have performances superior to the pure-MLP ensembles for

two base models, but have worse performances for larger numbers of models.

Mixed ensembles perform better than pure-RBF ensembles for all numbers of

base models. In the smaller ensembles, the diversity provided by including RBF

networks helped relative to pure-MLP ensembles. However, in the larger ensem-

bles, replacing half the MLPs with RBFs degrades performance--the RBFs are

different from the MLPs but not different enough from each other to warrant

having such a large number of them. The standard errors of the mean perfor-

mances decrease with increasing numbers of base models as is normally the case

with ensembles. The column marked "Post-Run Consolidated" shows the single

revolution results after allowing for confusions among the hover maneuvers and

among the coordinated turns, consolidating them into single classes (hover and

coordinated turns). As expected, the performances improved dramatically. The

column "Pre-Run Consolidated" shows the single revolution results on the sum-

mary matrices in which the hovers and coordinated turns were consolidated as

described in section 3. The performances here were consistently the highest as

we hypothesized.

The top half of table 4 shows the results of performing the windowed averag-

ing described in the previous section in the column marked "Window of 17." The

columns "Window 17 Post-Consolidated" and "Window 17 Pre-Consolidated"

give the results allowing for the confusions mentioned earlier. The bottom half

of the table gives the full set errors of the single-revolution classifiers. We can

clearly see the benefits of windowed averaging, which serves to smooth out some

of the noise in the data.

Table 5 shows the results with the AH1 summary matrices randomly split

into training and test sets. Table 6 has the windowed averaging and single-



Table4. 0H58c Full Data Set Results.

Base IType [ N

1

MLP 4

10
100

1

RBF 4
10

50

2

MLP/ 4
RBF 10

100

Base N

Type

1
MLP I 4

1%
1

RBF 4

10

50

MLP / iORBF

lOOI

Window

of 17

89.905 + 0.121

90.922 5= 0.074
91.128 5= 0.064

91,307 3= 0.015

82.564 d= 0.154

82.634 4- 0.059
82.618 5= 0.055

82.644 -b 0.019

Window 17

Post-Consolidated

96.579 5= 0.066

96.799 5= 0.026
96.820 3= 0.018

97.063 =k 0.140

92.831 4- 0.103

92.882 3= 0.047
92.895 4- 0.043

92.901 3= 0.013

Window 17

Pre-Consolidated

97.586 + 0.078

97.635 + 0.041
97.729 4- 0.031

97.695 4- 0.006

94.611 5= 0.124

94.548 5= 0.063
94.517 + 0.029

94.524 4- 0.012

88,674 5= 0,108 95,910 5= 0.059 97.155 5= 0,045

88.895 3= 0.078 95.902 3= 0.040 97.145 4- 0.067

89.I40 5= 0.057 95.980 4- 0.033 97.226 5= 0.032

89.320 5= 0.025 96.003 4- 0.012 97.204 5= 0.009

Single Single Rev Single Rev
Rev Post Consolidated Pre-Consolidated

82.097 + 0.072 93.539 5= 0.058 94.495 5= 0.064

84.304 5= 0.049 94.622 5= 0.039 95.321 5= 0.035

84.750 5= 0.043
85.048 3= 0.012

76.406 5= 0.099
76.799 + 0.040

76.836 3= 0.033

76.910 5= 0.011

82.146 5= 0.075
82.877 5= 0.053

83.332 5= 0.036

83.505 4- 0.0151

94.805 d= 0.028
94.922 4- 0.011

89.680 5= 0.077

89.872 + 0,039

89.902 + 0.027

89.948 4- 0.007

93.523 5= 0.061
93.854 4- 0.041

94.066 5= 0.029

94.142 4- 0.015

95.540 4- 0.029

95.595 5= 0.008

90.788 5= 0.147
91.187 5= 0.045

91.244 5= 0.027

91.271 5= 0.013

94.587 5= 0.049
94.876 5= 0.051

95.089 5= 0.024

95.163 5= 0.014

Table 5. AH1 Single Revolution Test Set Results.

I Base lType ] N

1

MLP 4

10
100

1

RBF 4

10

50

2

MLP/ 4
RBF 10

100

Single
Rev

96.752 ± 01059
97.284 4- 0.031

97.448 4- 0.027 99.992
97.542 4- 0.006 99.995

96.669 4- 0.059199.626

95.946 4- 0.029 99.706

95.911 _ 0.023 99.711

95.946 4- 0.009 99.716

97.040 5= 0.054 99.980

97.318 5= 0.025 99.986

97.429 3=0.018 99.990

97.521 ± 0.011 99.998

Post-Run Pre-Run

Consolidated Consolidated

99.843 5= 0.032 99,990 4- 0.002

99.975 5= 0,010 99,997 3= 0.001

4- 0.001 99,994 4- 0.001
4- 0,001 99,992 4- 0.001

0.011

0.009

0.005

0.002

3= 0.004 99,994 5= 0.002

5= 0.003 99.998 5= 0.001

± 0.002 99.998 3= 0.001

5= 0.001 100.000 4- 0.000

4- 0,017

5= 0.010
4- 0,006

3= 0.003

99,695 5=

99,751 5=

99.757 4-

99.761 3=



r BaseTypeI N
1

MLP 4
10
100
1

RBF 4
10
50
2

MLP/ 4
RBF 10

100

N

Table 6. AH1 Full Data Set Results.

Window Window 17 Window 17

of 17 Post-Consolidated Pre-Consolidated

98.344 4- 0.059 99.737 4- 0.028 100.000 4- 0.000

98.757 4- 0.031 99.811 4- 0.005 100.000 4- 0.000

98.779 4- 0.021 99.815 4- 0.002 100.000 4- 0.000

98.861 4- 0.006 99.816 4- 0.001 100.000 4- 0.000

96.662 4- 0.102

96.988 4- 0.042

96.968 4- 0.028
97.003 4- 0.008

99.404 4- 0.013

99.431 ± 0.012

99.428 4- 0.008
99.438 4- 0.003

99.653 4- 0.010

99.659 4- 0.021
99.676 4- 0.007

99.696 4- 0.003

98.256 4- 0.064 99.690 ± 0.006 99.908 ± 0.003

98.482 4- 0.034 99.682 ± 0.004 99.901 4- 0.013
98.475 4-0.028 99.683 ± 0.003 99.918 ± 0.002

BaseType

1

MLP 4

10

100

1

RBF 4

i0

50

2 97.231 ± 0.055

MLP/ 4 97.502 4- 0.028
RBF 110 97.570 4- 0.018

110 0 97.659 :f: 0.008

98.553 4- 0.005 99.687 4- 0.001 99.920 4- 0201

Single Single Rev Single Rev
Rev Post-Consolidated Pre-Consolidated

96.933 4-0.060 99.826 4- 0.037 99.992 ± 0.009
97.555 4- 0.025 99.975 4- 0.014 99.997 4- 0.007

97.683 4-0.013 99.994 ± 0.009 99.997 ± 0.005

97.7624-0.008 99.996 4- 0.009 99.997 4- 0.001

95.743 4- 0.067 99.676 4- 0.014 99.726 4- 0.012
96.063 4- 0.032 99.738 4- 0.005 99.767 4- 0.008

96.042 ± 0.026 99.742 ± 0.009 99.773 4- 0.009

96.067 4- 0.005 99.747 4- 0.000 99.781 4- 0.002

99.984 4- 0.000

99.988 ± 0.005

99.9934-0.005

99.999 ± 0.005

99.997 ± 0.005

99.998 ± 0.005

99.999 4- 0.003

lO0.O00 4- 0.000

revolution classifier results, respectively, on the full AH1 dataset. These results

are substantially better than the OH58 results. We expected this because the

AH1 is a heavier helicopter, so it is less affected by conditions that tend to

introduce noise such as high winds. Just as with the OH58, with the AH1 without

consolidating maneuvers, the mixed ensembles outperform the pure ensembles

for small numbers of base models but perform worse than the MLP ensembles

for larger numbers of base models. With consolidation, the mixed ensembles

outperform the pure ensembles more often; however, the performances are all

very high. Once again, we can see that ensembles of MLPs outperform single

MLPs to a greater extent than ensembles of RBFs outperform single RBFs, so

the RBFs are not as different from one another. Because of this, it does not

help to add large numbers of RBF networks to an MLP ensemble. The standard

errors of the mean performances tend to decrease with increasing numbers of

base models just as with the OH58.

On the AH1, the hover maneuvers were frequently confused just as they were

on the OH58, but the coordinated turns were not confused. Taking this con-

fusion into account boosted performance significantly. The windowed averaging



Inputs I

Table 7. AH1 Bus and Non-Bus Results

Single Single Rev Window Window of
Rev Consolidated of 17 17 ConsoLidated

Bus 90.380 -4-0. II0 95.871 =t: 0.091 91.209 ± 0.126 96.027 =i=0.086
Non-Busi87.884 -t- 0.228 93.731 =k 0.171 92.913 4- 0.355 96.110 :k 0.236
P(agree)'79.523 :t= 0.247 90.063 :t: 0.202 35.609 + 0.320 93.393 + 0.247

approach did not always yield improvement when allowing for the maneuver con-
fusions, but helped when classifying across the full set of maneuvers. However,

in all cases when windowed averaging did not help, the classifier performance

was at least 99.6%, so there was very little room for improvement.

5 Discussion

In this paper, we presented an approach to fault detection that contains a sub-

system to classify an operating aircraft into one of several states. More specifi-

cally, the proposed subsystem determines the maneuver being performed by an

aircraft as a function of vibration data and any other available data. Through

experiments with two helicopters, we demonstrated that the subsystem is able

to determine the maneuver being performed with good reliability. These results

show great promise in classifying the correct maneuver with high certainty. Fu-

ture work will involve applying this approach to "free-flight data", where the

maneuvers are not static or steady-state, and transitions between maneuvers
exist.

We are currently constructing classifiers using different subsets of the avail-

able data as inputs. For example, for the AI-I1, we have constructed some classi-

fiers that use only the bus data as input and others that use only the vibration
data. We hypothesize that disagreement among these classifiers that use differ-

ent sources of information may indicate the presence of a fault. For example,

if the vibration data-based classifier predicts that the aircraft is flying forward

at high speed but the bus data-based classifier predicts that the aircraft is on

the ground, then the probability of a fault is high. Table 7 shows the results

of training 20 single MLPs on these data using the same network topology as

for the other MLPs trained on all the AH1 data. They performed much worse

than the single MLPs trained with all the inputs presented at once. The last line
in the table indicates the percentage of maneuvers for which the two types of

classifiers agreed. We would like these agreement probabilities to be much higher

because none of our data contains faults. However, we hypothesize that we can

use the bus data in a much simpler way to achieve better performance. For ex-

ample, if a vibration data-based classifier predicts that the aircraft is performing

a forward flight, but the bus data indicate that airspeed is near zero, then the

probability of a fault is high. We do not necessarily need a classifier that returns
the maneuver as a function of all the variables that constitute the bus data. In

this example, we merely need to know that a near-zero airspeed is inconsistent



with a forward flight. We plan to perform a detailed study of the collected bus

data so that we may construct simple classifiers representing knowledge of the

type just mentioned and use them to find inconsistencies such as what we just

described.

There is ongoing work within our research group to model aircraft engine

operation from "first principles." In particular, models of the gear system are

being prepared so that simulated data may be collected. We plan to use this

simulation to insert cracks and other types of faults in the gear system in order

to learn how the data changes as a function of these faults. This information

can be used to mathematically insert faults into the real data. This gives us the

fault data that we clearly cannot collect from the aircraft directly. We hope to

generate such fault data and test whether our classification subsystems react to

fault data in the way we expect.
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